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Abstract—The photoplethysmogram (PPG) is the pulsatile wave-
form produced by the pulse oximeter, which is widely used for
monitoring arterial oxygen saturation in patients. Various methods
for extracting the breathing rate from the PPG waveform have been
compared using a consistent data set, and a novel technique using
autoregressive modelling is presented. This novel technique is shown
to outperform the existing techniques, with a mean error in breathing
rate of 0.04 breaths per minute.
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I. INTRODUCTION

PULSE oximetry is frequently used in clinical situations
for non-invasive measurement of heart rate and arterial

oxygen saturation. It has been suggested that signal processing
techniques can be used to extract the breathing rate from the
photoplethysmogram (PPG), which is the pulsatile waveform
produced by a pulse oximeter at one of its two wavelengths
(red and infra-red). If this is possible, it would allow non-
invasive measurement of breathing rate using a device (the
pulse oximeter) that is already used in many clinical situations,
and is known to cause a minimum of distress or inconvenience
to the patient.

A number of methods for deriving the breathing rate from
the PPG have been suggested in the literature. Results from
the assessment of these methods using a consistent data set
are presented in this paper, allowing comparisons between the
methods to be made. A new method using autoregressive (AR)
modelling has also been developed, and is shown to perform
better than the existing techniques.

II. MATERIALS AND METHODS

Seven records from the MIMIC database in the Physiobank
archive [1] were identified for use in assessing the accuracy
of the algorithms for the extraction of breathing rate. These
records all contain both the PPG waveform, and a synchronous
respiratory waveform (believed to be obtained by nasal ther-
mistry) for use as a reference. Two five–minute sections from
each of the records were identified for use in the tests, resulting
in a dataset consisting of fourteen five–minute sections from
seven individuals. Sections were identified by looking for the
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Fig. 1. A thirty second period of the PPG and reference respiratory waveform
from Patient A. The positions of individual breaths detected in the reference
respiratory waveform are show by circles.

first two non-overlapping five–minute sections which did not
have missing data in either the PPG or the reference respiratory
waveform channels.

An extrema detection algorithm was implemented to obtain
timestamps for individual breaths in the reference respiratory
waveform, with the results checked visually to ensure that all
of the breaths in the respiratory waveform were identified,
and that all of the detected breaths corresponded to actual
breaths in the waveform. Fig. 1 shows the positions of these
timestamps for a 30–second period within one of the test
sections. As the reference respiratory waveform occasionally
contains artefactual spikes, it was filtered prior to detection
using an FIR band-pass filter. The filter uses a Kaiser win-
dowing function, with a pass-band extending from 0.1–40Hz
(i.e. from 6 breaths per minute to just below mains frequency),
30dB attenuation, and a 5% pass-band ripple.

Where visual inspection showed that the algorithm had iden-
tified artefactual breaths due to excessive levels of noise on the
reference respiratory waveform, the artefactual breaths were
removed from the timestamp data. In some cases, the reference
respiratory waveform was so noisy that visual identification
of breaths was not possible; in these cases, the section was
replaced by another five–minute section from the same record.

The existing signal processing algorithms for obtaining the
breathing rate from the PPG were implemented in Matlab,
following the descriptions in the literature. Two methods using
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Fig. 2. PPG derived respiratory waveforms from the two digital filtering
methods and reference respiratory waveform for Patient A, with detected
breaths marked by circles.

digital filtering, as described by Nilsson et. al. and Nakajima
et. al. were investigated, as well as the wavelet-based method
described by Addison et. al.. Where the algorithms resulted in
a breathing-synchronous waveform, the breath timings were
obtained using the same extrema detection algorithm as was
used for the reference respiratory waveform, omitting the
initial band-pass filter.

The ensemble breathing rate in breaths per minute over the
five–minute section was calculated and the absolute difference
from the reference rate (derived from the reference respiratory
waveform) was then used as the primary measure of perfor-
mance for the algorithms for extracting the breathing rate from
the PPG waveform.

A. Digital Filtering

Nilsson et al. suggest the use of a 3rd order Butterworth
band-pass filter with a pass-band from 0.1–0.3Hz (6 to 18
breaths per minute) [2], [3]. This was found to perform well,
with an average error of less than 0.5 breaths per minute when
compared to the reference rate.

Filtering is also used in the method suggested by Nakajima
et al. [4]. In this, the PPG is initially filtered with analogue
low- and high-pass filters with cut-off frequencies at 0.1
and 5Hz. The breathing signal is then obtained using three
different low-pass filters, with cut-off frequencies at 0.3, 0.4
and 0.55Hz. The choice of filter is determined by the heart
rate (or pulse rate), so that a higher cut-off frequency is
used at a higher heart rate, and hysteresis is employed to
reduce the rate at which filters are switched. The filters were
implemented using the characteristics described in [4], using a
Kaiser windowing function. Despite the increased complexity
of this algorithm, it does not perform as well as the one
proposed by Nilsson et al., and has an average error of over
3 breaths per minute when compared to the reference rate.

Fig. 2 shows the results of using the two different filtering
methods on the relatively clean PPG signal from Patient A,
together with the reference respiratory waveform.
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Fig. 3. PPG derived respiratory waveform from the wavelet method (obtained
from the ridge of the breathing band) and reference respiratory waveform from
Patient A, with detected breaths marked by circles.

B. Wavelet decomposition

Addison et al. use wavelet transforms to extract a breathing
waveform from the PPG [5], [6], [7], [8], [9], [10], [11],
[12]. The PPG signal is decomposed by a continuous wavelet
transform using the complex Morlet wavelet to produce a
scalogram in which two bands can be identified: one at
the frequency corresponding to the breathing rate, and one
at the frequency corresponding to the pulse rate. The crest
of the ridge corresponding to the pulse band is followed
and projected as either an amplitude-time or frequency-time
signal. These signals are referred to as the ridge amplitude
perturbation (RAP) and ridge frequency perturbation (RFP)
respectively.

The RAP and RFP are then subjected to further wavelet
transformation, and the resulting scalograms are interrogated
for the presence of breathing ridges. Therefore, up to three
breathing signals may be obtained from a single PPG: from
the original signal, the RAP, and the RFP. The ‘best’ source
for each five-minute section was chosen as the one with the
lowest absolute error when compared to the reference. This
could not be used in practice, when a reference rate will not
be available, but was used here to ensure that the best possible
results are presented.

Despite the complexity and computational difficulty of this
method, it was found to have an average error of 1 breath per
minute when compared to the reference respiratory rate. These
results are worse than those reported in [9], [10], [11], [12],
although the reason for this is not clear. The published results
are reported to have been obtained using a raw PPG signal,
and it is likely that the waveforms in the MIMIC database
have undergone some pre-processing, which may explain at
least some of the discrepancy.

C. Novel AR method

We have developed a novel method of measuring the breath-
ing rate from the PPG signal using autoregressive modelling.
This technique has been applied to a number of other physio-
logical signals, including the EEG [13] and the intrapartum

World Academy of Science, Engineering and Technology 30 2007

277



cardiotocogram [14], but has not yet been applied to the
problem of extracting breathing rate information from the PPG
waveform.

AR modelling can be formulated as a linear prediction
problem, where the current value x(n) can be modelled as
a linearly weighted sum of the preceding p values. The
parameter p is the model order, which is usually much smaller
than the length of the sequence N .

x(n) = −
p∑

k=1

akx(n − k) + e(n) (1)

The value of the output x(n) is therefore a linear regression
on itself, with an error e(n), which is assumed to be normally
distributed with zero mean and a variance σ2. The problem
can also be visualised in terms of a system with input e(n),
and output x(n), in which case the transfer function H can
be formulated as shown below:

H(z) =
1∑p

k=1 akz−k
=

zp

(z − z1)(z − z2) . . . (z − zp)
(2)

As shown in (2), the denominator of H(z) can be factorised
into p terms. Each of these terms defines a root zi of the
denominator of H(z), corresponding to a pole of H(z).
Since H(z) has no finite zeros, the AR model is an all-pole
model. The poles occur in complex-conjugate pairs, and define
spectral peaks in the power spectrum of the signal, with higher
magnitude poles corresponding to higher magnitude peaks.
The resonant frequency of each spectral peak is given by the
phase angle of the corresponding pole, such that the phase
angle θ of a pole at frequency f is defined by (3), which
shows that it is also dependent on the sampling interval Δt.

θ = 2πfΔt (3)

The PPG signal is typically sampled at rates between 100
and 250 Hz to ensure that the shape and heart rate information
are preserved. At such high sample rates, the phase angles
corresponding to breathing frequencies are very small, which
is likely to lead to inaccuracy in identifying the frequency
of the breathing pole, or possibly even the absence of a
breathing pole in the AR model (since it would be subsumed
into the real-axis, or d.c., poles). It is therefore necessary to
downsample the signal to increase the angular resolution of the
low frequency information. This also ensures that the cardiac-
synchronous pulsatile component of the PPG is no longer
dominant, as otherwise many or all of the poles will be used
to model this signal, rather than the wanted breathing signal.
To improve the stability of the AR model, it is also necessary
to remove any DC offset from the downsampled PPG.

The PPG signal is therefore downsampled and detrended
prior to AR modelling. A decimation algorithm, which filters
the signal prior to resampling, is used to reduce the effect of
aliasing in the downsampled signal.

A range of angles is defined by the expected breathing
frequencies for a normal subject, and the poles with phase
angles within this range are identified as possible breathing
poles. For models with p > 3, multiple poles may be identified,
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Fig. 4. Downsampling to 1 Hz and detrending of the PPG of Patient A prior
to applying the AR model.

0

0

Real

Im
ag

in
ar

y

Fig. 5. Poles of AR model (11th order model, PPG downsampled to 1Hz)
for Patient A, with breathing pole circled, and the limits of the sector of
interest indicated by the dashed lines. The phase angle of the breathing pole
corresponds to 0.27 Hz (16 breaths per minute)

as the range of possible breathing frequencies is quite large,
and most other signals will have been removed by the filtering
and downsampling steps. The choice of pole is made using the
magnitude of the poles, as poles corresponding to breathing
should have a high magnitude. The pole with the highest
magnitude in the sector of interest is identified, and a threshold
of 95% of the magnitude of this pole is used to find candidate
poles in the sector of interest.

Of this candidate group, the pole with the smallest angle
(corresponding to the lowest frequency) is identified as the
breathing pole. This requirement is introduced because poles
at a multiple of the breathing frequency occasionally occur
with a slightly higher magnitude than that of the true breathing
pole.

For adult subjects, the sector of interest is defined as that
covering the angles corresponding to frequencies between 0.08
and 0.7 Hz (4.8–42 breaths per minute), although it should
be noted that a different upper limit may be imposed by the
Nyquist limit following downsampling (i.e. downsampling to
1 Hz would impose an upper limit of 0.5 Hz, or 30 breaths
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TABLE I
ERRORS (IN BREATHS PER MINUTE) BETWEEN PREDICTED BREATHING

RATE FROM THE PPG AND THE REFERENCE RESPIRATORY RATE

Method Mean error Range
Filtering (Nilsson et al.) 0.47 0.006–2.52

Filtering (Nakajima et al.) 3.02 0.004–8.2
Wavelets (Addison et al.) 1.01 0.06–2.73

Novel AR method 0.04 0.0008–0.17

per minute).
The optimal combination of AR model order and downsam-

pled frequency was determined experimentally using six of the
fourteen sections in the dataset. The lowest error was found
with an 11th order model and a downsampled frequency of 1
Hz. This resulted in an average error of just 0.04 breaths per
minute when compared to the reference respiratory rate.

Fig. 4 shows the pre-processing of a PPG signal before
the AR model is applied, and Fig. 5 shows the poles of
the corresponding AR model. The accuracy of the breathing
rate estimation is underlined by the high magnitude of the
breathing pole circled in Fig. 5, which lies very close to the
unit circle. As the PPG is downsampled to 1 Hz, the upper
limit of the sector of interest is reduced to 30 breaths per
minute by the Nyquist criterion, as shown in Fig. 5 by the
line along the negative real axis.

III. RESULTS AND DISCUSSION

Table I shows that the novel AR method presented in this
paper performs better than both the digital filtering and wavelet
decomposition methods for extracting the breathing rate from
a PPG waveform on most signals. Further processing to reduce
the likelihood of choosing a harmonic or subharmonic of
the breathing rate should be possible and would improve the
accuracy to that shown in the final row of Table I.

The model order and downsampled frequency of the AR
model have been optimised in this section for 5-minute sec-
tions of the PPG waveform from adult subjects, and may need
to be altered for use with sections of different lengths or pae-
diatric patients, whose higher breathing rate may necessitate
a higher downsampled frequency. As with most methods, the
accuracy of the results is likely to be correlated with the length
of the signal being analysed, as longer signals will contain
more breathing cycles. However, the longer the sections, the
greater the delay before a breathing rate estimate is produced
and the lower the ability to track changes in breathing rates.

IV. REAL-TIME BREATHING RATE EXTRACTION USING AR
For most clinical applications, the breathing rate needs to be

tracked over the period of monitoring. Further investigations
were carried out using the novel AR method described above
to assess its utility for real-time tracking of breathing rate.

To ensure that changes in breathing rate can be tracked
accurately with minimal delay, it is necessary to reduce the
length of the sections used to calculate the breathing rate.
To simulate real-time measurement, the five–minute sections
of data were windowed into 30–second sections, with a 25–
second overlap, so that the start times of consecutive windows
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Fig. 6. Pre-processing of 30–second section of PPG from Patient A prior to
AR modelling.

0

0

Real

Im
ag

in
ar

y

Fig. 7. Poles of AR model (9th order model, PPG downsampled to 2 Hz) on
a 30–second section of PPG from Patient A, with breathing pole circled, and
the limits of the sector of interest indicated by the dashed lines. The phase
angle of the breathing pole corresponds to 0.26 Hz (16 breaths per minute)

differ by 5 seconds. The shorter window length reduces the
amount of data available for estimating the parameters of the
AR model (by a factor of 10), and so the accuracy of the
breathing rate is likely to be degraded. The amount of available
data can be increased by reducing the downsampling ratio, but
the heart rate frequency then becomes more prominent in the
downsampled signal, reducing the accuracy of the placement
of the breathing pole. Poles due to the subharmonics of the
heart rate can also appear in the breathing sector of the AR
model, and may be of higher magnitude than the true breathing
pole, leading to incorrect pole choice.

To allow the use of a lower downsampling ratio, pre-filtering
of the PPG can be carried out to minimise the effect of the
heart rate information. An FIR low-pass filter using the Kaiser
windowing function was designed for this purpose. The filter
has a transition band extending from 0.4–0.8 Hz (i.e. from 24–
48 breaths or beats per minute). The upper frequency is low
enough to ensure that all heart rate frequencies should lie out-
side the pass-band, without introducing excessive attenuation
at adult breathing rates. The pass-band ripple was designed
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Fig. 8. Poles of AR model (9th order model, PPG downsampled to 2 Hz) on
a 30–second section of PPG from Patient B, with breathing pole circled, and
the limits of the sector of interest indicated by the dashed lines. The phase
angle of the breathing pole corresponds to 0.13 Hz (7.8 breaths per minute)

to be 5%, and the stop-band attenuation was chosen to be
30 dB. The filter requires 490 coefficients, which corresponds
to a delay of less than 4 seconds at the 125 Hz sampling
frequency used in the MIMIC dataset. After pre-filtering, the
PPG is decimated and downsampled as before.

As the window size had been changed, and extra pre-
processing had been introduced, it was necessary to repeat
the tests to find an optimal combination of downsampled
frequency and AR model order. This was determined exper-
imentally in the same way as for the five–minute sections,
and was found to be a 9th order model with a downsampled
frequency of 2 Hz.

Figs. 6 and 7 shows how this model performs on a 30–
second section of one of the PPG waveforms from the MIMIC
dataset. The breathing pole is correctly placed and has high
magnitude. As the downsampling ratio has doubled compared
to that in Fig. 5, the angle of the sector of interest has
decreased, and is no longer limited by the Nyquist criterion.

Artefacts in the PPG waveform will have a greater effect
on the estimation of breathing rate in shorter windows of the
PPG waveform, and this can lead to inaccurate breathing pole
placement for some 30–second sections. A tracking method,
such as Kalman filtering, could be used to reduce the error
introduced in this way.

V. CONCLUSIONS

Current methods for extracting breathing rate from the PPG
vary in their accuracy, and this accuracy is not necessarily
correlated to the complexity of the method. A novel method
using autoregressive model has been shown to significantly
outperform the current methods, and could be used for real-
time tracking of breathing rate using the PPG waveform.

Pulse oximeters are already used in clinical practice for con-
tinuous non-invasive monitoring of arterial oxygen saturation
and heart rate. The addition of a measure of breathing rate to
the pulse oximeter display could allow earlier recognition of
deterioration in patients whose condition does not merit the
use of a dedicated sensor to measure breathing rate, as their

breathing rate would otherwise only be measured manually
and infrequently. It would also be possible to use data fusion
methods on the three signals from the pulse oximeter to
provide early warning if more than one of the measurements
deviate from the norm [15].
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